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Abstract

A class of cooperative controllers is designed for a group of autonomous vehicles, using the relative positions between ge-
ographical neighbors and a specified target. The controller is equipped with three components: attractive component that
drives each vehicle towards the target, repulsive component between adjacent vehicles, and rotation component for neighbored
vehicles aligned with the target in a straight line. It is proved that the vehicles with the proposed autonomous controller can
asymptotically fence a specified target to their convex hull. Meanwhile, the vehicles do not collide and they are not stuck in a
singleton formation.
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1 Introduction

The cooperative target-fencing problem studied in this
paper aims at a class of autonomous controllers that can
drive a group of vehicles to asymptotically fence a speci-
fied target to their convex hull. It is technically relevant
to various cooperative formation control problems, for
example, the circular motion in [1, 3, 10]. These circular
formation control formulations do not essentially involve
a physical target. The other class of relevant research
was formulated as a target-enclosing or target-capturing
problem. For instance, a cyclic pursuit strategy was used
in [7] to drive agents to enclose the target object, called
target-capturing. The technique of enclosing a target by
holonomic or nonholonomicmobile vehicles was reported
in [5,11], where vehicles eventually move on a circle cen-
tered at the target with a predefined stand-off distance.

In the aforementioned results, the group of agents aim
to enclose a target within their moving trajectories.
The agents do not necessarily enclose a target at every
moment, even when the desired behavior is achieved.
However, the target-fencing protocol studied in this pa-
per aims to drive a group of vehicles to asymptotically
approach some desired trajectories that fence a speci-
fied target to their convex hull, at every moment. A dual
problem of target-fencing is the so-called containment
control studied in, e.g., [6], that aims to drive a group
of agents to be contained in an area fenced by another
group of targets. The target-fencing problem is also
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called surrounding control in, e.g., [2, 8]. A control ap-
proach was proposed in [2] by assuming that the vehicles
are initially placed within a circle and/or using a pre-
defined stand-off distance between the vehicles and the
target. In [8], the surrounding formation is specified by a
complex-value adjacency matrix. A predefined distance
was also used in the aforementioned target-enclosing or
target-capturing problem such as [5, 11].

The main objective of this paper is to develop a novel
class of cooperative target-fencing controllers for a group
of autonomous vehicles, without a specified stand-off
distance or formation. In other words, the distance be-
tween the vehicles and the target is autonomously main-
tained. Each controller uses only the relative positions
between geographical neighbors and the target. The nov-
elty of the controller is that it is equipped with three
fundamental functionalities: attractive component that
drives each vehicle towards the target, repulsive com-
ponent between adjacent vehicles, and rotation compo-
nent for neighbored vehicles aligned with the target in a
straight line. It is proved that the group of vehicles with
the controller can asymptotically fence a specified target
to their convex hull. Meanwhile, the vehicles do not col-
lide and they are not stuck in a singleton formation. It
is worth mentioning that collision avoidance has its in-
dependent theoretical interest and practical importance
and it has been extensively studied for various scenarios
in, e.g., [4,9]. It is novel to include collision avoidance in
the proposed target-fencing scenario.
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2 Main Results

Let N = {1, 2, · · · , N}. Denote the complete posi-
tion distribution of a multi-agent system by x =
[xT

1 , . . . , x
T
N ]T, where xi = [x1,i, x2,i]

T ∈ R2, i ∈ N, rep-
resents the Cartesian coordinates of the i-th vehicle.
The kinematics model of each vehicle is represented by
a continuous-time equation

ẋi(t) = ui(t), i ∈ N (1)

with the input ui to be designed. Throughout the paper,
the time argument (t) is ignored for neatness when no
confusion is caused. Denote the convex hull of x1, · · · ,
xN by co(x), that is,

co(x) =

{
N∑
i=1

λixi : λi ≥ 0,∀i and

N∑
i=1

λi = 1

}
.

LetPxo(x) = mins∈co(x) ‖xo−s‖ be the distance between
a point xo and co(x) and pxo

(x) = arg mins∈co(x) ‖xo−s‖
be the point in co(x) that has the distance from xo. Obvi-
ously, xo ∈ co(x) if and only ifPxo(x) = 0. Let area(x) be
the area of co(x), i.e., the Lebesgue measure of the sub-
set co(x) of the two-dimensional Euclidean space. The
vehicles form a straight line when area(x) = 0. Through-
out the paper, it is assumed that the number of vehicles
N ≥ 3 such that area(x) 6= 0 for some position distri-
bution x. For a specified target position xo ∈ R2, de-
fine the augmented position distribution xa = [xT

o , x
T]T.

Similarly, we denote the convex hull of xo, x1, · · · , xN
by co(xa) and the area of co(xa) by area(xa).

The target-fencing problem aims to design the controller
ui of the model (1), for a specified target position xo ∈ R2,
such that the closed-loop system satisfies the following
properties

• (P1) the target xo is asymptotically fenced by the ve-
hicles in the sense of limt→∞ Pxo

(x(t)) = 0;
• (P2) collision among vehicles is avoided in the sense
of ‖xi(t)−xj(t)‖ > d, ∀t ≥ 0, i 6= j ∈ N for a specified
d > 0;

• (P3) the set

S = {x ∈ R2N | area(xa) = 0, ‖xi − xj‖ > d, i 6= j ∈ N},

called a singleton formation (a straight line), is not an
invariant set.

Remark 2.1 The property (P1) has a two-fold meaning.
One one hand, there exist some desired trajectories, rep-
resented by

x∗(t) = x(t)− 1⊗ [pxo
(x(t))− xo],

where 1 is a N -dimensional vector of elements 1 and ⊗
represents the Kronecker product. Due to the following

fact

Pxo
(x∗(t)) = min

s∈co(x∗(t))
‖xo − s‖

= min
s∈co(x(t))

‖xo − (s− (pxo(x(t))− xo))‖

= min
s∈co(x(t))

‖s− pxo
(x(t))‖ = 0, ∀t

the desired trajectories fence the target to their convex
hull, at every moment. One the other hand, the vehicles
asymptotically approach the desired trajectories as

lim
t→∞

‖x(t)− x∗(t)‖ =
√
N lim

t→∞
‖pxo(x(t))− xo‖

=
√
N lim

t→∞
Pxo(x(t)) = 0.

Remark 2.2 The property (P2) excludes collision
among vehicles. However, it should be noted that col-
lision between a vehicle and the target is not an issue
considered in this framework. This scenario can find
applications such as roundup of a ground target by fly-
ing drones where we must consider collision avoidance
among drones but the ground target and a flying drone
never collide at different heights. Meanwhile, the con-
trol strategy can be developed on a two-dimensional
plane as formulated in this paper without considering
the vertical dimension.

Remark 2.3 The property (P3) guarantees that the ve-
hicles do not stay in the singleton formation S forever.
Theoretically, they may reach the singleton formation S
periodically, but will move out of S when it occurs.

Define the set of geographical neighbors of the i-th ve-
hicle as

Ni(t) = {j ∈ N : j 6= i |‖xi(t)− xj(t)‖ ≤ µ} , i ∈ N

with a specified vision distance µ > d > 0 where d is the
threshold of collision avoidance. As the neighborhood is
symmetrically defined according to the distance of two
agents, the underlying graph is thus undirected. Con-
sider the control input ui = uoi for each vehicle, with
xij := xi − xj and uoi defined as follow

uoi =
∑
j∈Ni

α(‖xij‖)
xij
‖xij‖

+
∑
j∈Ni

β(xi, xj , xo)R
xij
‖xij‖

+ k(xo − xi), i ∈ N, (2)

where k > 0 is a constant gain and R is the 90◦ counter
clockwise rotation matrix. The function α : (d,∞) 7→
[0,∞) is continuous and satisfies α(s) = 0,∀s ∈ [µ,∞)
and lims→d α(s) =∞. The function β is explicitly given
by β(xi, xj , xo) = εmax{0, δ −∠(xio, xjo)} for two con-
stants δ ∈ [0, π/2) and ε > 0, where

∠(xio, xjo) = arccos

(
xio • xjo
‖xio‖‖xjo‖

)
∈ [0, π]
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is the angle of the two vectors xio and xjo. Here, • is
the dot product operator. Let ∠(0, a) = ∠(a, 0) = π for
completeness of notation.

The controller (2) contains three fundamental function-
alities. The attractive component k(xo−xi) drives each
vehicle towards the target. The repulsive component∑
j∈Ni

α(‖xij‖) xij

‖xij‖ between two geographically neigh-
bored vehicles works to avoid their collision. These two
components eventually reach balance when the vehi-
cles approach appropriate positions that fence the tar-
get within their convex hull. The additional component∑
j∈Ni

β(xi, xj , xo)Rxij/‖xij‖ takes effect when two ve-
hicles and the target are almost aligned in a straight line.
In particular, the rotation due to the matrix R drives an
agent to turn and thus escape the singleton formation,
when the angle of the two vectors xio and xjo is smaller
than the specified parameter δ in the function β. The
other parameter ε in β represents the strength of the ro-
tation component.

Theorem 2.1 For the system (1) with the control input
ui = uoi defined in (2), the target-fencing problem is
solved in the sense of (P1), (P2), and (P3) for N > 3,
provided that the vehicles do not initially collide, i.e.,
‖xi(0)− xj(0)‖ > d, i 6= j ∈ N. Moreover, the result still
holds for ui = uoi + ei, subject to any input disturbance
satisfying limt→∞ ei(t) = 0, i ∈ N, exponentially.

Proof: Let x̄ =
∑
i∈N xi/N be the center of the vehicles

and ē =
∑
i∈N ei/N be the average of input disturbances.

A direct calculation shows

˙̄x =
1

N

∑
i∈N

∑
j∈Ni

α(‖xij‖)
xij
‖xij‖

+
1

N

∑
i∈N

∑
j∈Ni

β(xi, xj , xo)R
xij
‖xij‖

+
1

N

∑
i∈N

k(xo − xi) +
1

N

∑
i∈N

ei

=− kx̄+ kxo + ē,

due to the facts i ∈ Nj ⇔ j ∈ Ni, xij = −xji, and
β(xi, xj , xo) = β(xj , xi, xo). For this linear system,
it is obvious to see that limt→∞ x̄(t) − xo = 0 as
limt→∞ ē(t) = 0 exponentially. It, together with the
fact x̄ ∈ co(x), further implies limt→∞ Pxo

(x(t)) = 0.
The property (P1) is proved.

To prove the property (P2), we define a potential energy
function

V (x) =
1

2

∑
i∈N

∑
j∈Ni

∫ µ

‖xij‖
α(s)ds+

k

2

∑
i∈N
‖xi − xo‖2.

(3)

Obviously, V (x) is nonnegative. We will next show the
change of V (x) along the trajectory of the closed-loop

system. Denote

φi =
∑
j∈Ni

α(‖xij‖)
xij
‖xij‖

, ψi =
∑
j∈Ni

β(xi, xj , xo)R
xij
‖xij‖

.

One has ‖ψi‖ ≤ (N − 1)εδ. It is noted that

∂V (x)

∂xi
=−

∑
j∈Ni

α(‖xij‖)
xT
ij

‖xij‖
+ k(xi − xo)T

=− φT
i + k(xi − xo)T.

and hence

∂V (x)

∂xi
ẋi =

[
−φT

i + k(xi − xo)T
]

× [φi + ψi + k(xo − xi) + ei]

=− ‖φi + k(xo − xi) + (ψi + ei)/2‖2

+ ‖ψi + ei‖2/4
≤‖ψi + ei‖2/4 ≤ (‖ψi‖2 + ‖ei‖2)/2.

As a result,

dV (x(t))

dt
=
∑
i∈N

∂V (x)

∂xi
ẋi ≤

∑
i∈N

(‖ψi‖2 + ‖ei‖2)/2.

For any t ≥ 0 and any i 6= j ∈ N, one has∫ µ

‖xij(t)‖
α(s)ds ≤ V (x(t)) = V (x(0)) +

∫ t

0

dV (x(t))

dt
dt

≤ V (x(0)) + C1t+ C2 <∞

for two finite constants

C1 = N((N − 1)εδ)2/2, C2 =
∑
i∈N

∫ ∞
0

‖ei(t)‖2dt/2.

Finally, the fact
∫ µ
‖xij(t)‖ α(s)ds <∞ implies ‖xij(t)‖ >

d and thus completes the proof.

It suffices to prove the property (P3) if a contradiction is
shown from the assumption that the set S is an invariant
set. Under the assumption, the system state x(0) ∈ S
implies x(t) ∈ S,∀t ≥ 0, along the closed-loop dynam-
ics. Therefore, all the vehicles and the target are always
aligned in a straight line. Due to the proved collision
avoidance feature, the sequence of the vehicles along the
line does not change. So, one can denote the two end
vehicles by ~ 6= ` ∈ N.

Select a constant σ = min{k(N − 1)d/4, εδ/2, kµ/2}.
From the proof of (P1), i.e., limt→∞ x̄(t)−xo = 0, there
exists T such that xo is between x~(t) and x`(t), for
all t ≥ T . Also, ‖ei(t)‖ ≤ σ, i ∈ N, for all t ≥ T as
limt→∞ ei(t) = 0.

3



There exists T1 ≥ T such that N~(T1) ∪ N`(T1) 6= ∅.
Otherwise, the speeds of ~ and `, towards xo, are

u~ • xo~/‖xo~‖ = −kx~o • xo~/‖xo~‖+ e~ • xo~/‖xo~‖
= k‖xo~‖+ e~ • xo~/‖xo~‖

and

u` • xo`/‖xo`‖ = k‖xo`‖+ e` • xo`/‖xo`‖,

respectively. So, the relative speed between ~ and ` is

k‖x~`‖+ e~ • xo~/‖xo~‖+ e` • xo`/‖xo`‖
> k(N − 1)d− 2σ ≥ k(N − 1)d/2.

It contradicts that ~ and ` never collide. Without loss
of generality, let N~(T1) 6= ∅. Denote κ be the nearest
neighbor of ~, i.e., no vehicle exists between ~ and κ.
Next, we consider two cases.

(i) κ is between ~ and xo at T1. 1

(ii) κ is not between ~ and xo at T1. So, ‖x~o(T1)‖ ≤
‖x~κ(T1)‖ ≤ µ. Next, we consider two sub-cases.

(ii-a) κ is always between ` and xo or on xo for t ≥ T1.
Then, the speed of ` towards xo is

u` • xo`/‖xo`‖ = k‖xo`‖+ e` • xo`/‖xo`‖
> k(N − 2)d− σ ≥ k(N − 2)d/2.

There exists T2 ≥ T1 such thatN`(T2) 6= ∅ that includes
a vehicle between ` and xo, for N > 3.

(ii-b) κ is not always between ` and xo or on xo for t ≥ T1.
So, let T3 ≥ T1 be the first time such that xκ(T3) = xo
and it moves to ~ for t > T3. One has ‖x~o(t)‖ ≤ µ for
t ∈ [T1, T3]. In fact, for any ‖x~o(t)‖ = µ, the speed of ~
towards xo is

u~ • xo~/‖xo~‖ = k‖xo~‖+ e~ • xo~/‖xo~‖
> kµ− σ ≥ kµ/2.

Therefore, there exists T̃ > 0 such that N~(T3 + T̃ ) 6= ∅
and κ is between ~ and xo at T3 + T̃ .

From above, one can conclude that at T1 (or T2, T3 + T̃ ),
the end vehicle ~ (or `, ~) has a neighbor that is between
itself and xo. For instance, at T1, ~ has a neighbor that
is between itself and xo, ~ has a counter clockwise speed
≥ εδ − σ ≥ εδ/2 around xo, that is, the angle of the
velocity vector is within (∠(x~ − xo),∠(x~ − xo) + π).
Let κ′ be the vehicle (always exists) that has a neighbor
~ or a neighbor between itself and ~ but no neighbor
between itself and xo. Then κ′ has a clockwise speed
≥ εδ − σ ≥ εδ/2 around xo, that is, the angle of the
velocity vector is within (∠(xκ′ − xo)− π,∠(xκ′ − xo)).
After the time instant T1, ~, κ′ and xo do not stay on a
straight line.

1 We say a vehicle a is between b and c at t if xa(t) =
λxb(t) + (1− λ)xc(t) for 0 < λ < 1.

Remark 2.4 The theorem shows that the center of the
vehicles, x̄, converges to the target xo. Due to the com-
ponent k(xo − xi), each agent xi never diverges from
the target xo. Also, the center is not on the boundary
of the convex hull when it is not a singleton formation.
Therefore, the fact that the center converges to the tar-
get implies that the target will eventually enter into the
convex hull.

Remark 2.5 In the theorem, we prove (P3) for N > 3
because a singleton formation may theoretically exist
for N = 3 for a special initial setting where three ve-
hicles are initially in a singleton formation, one vehi-
cle is overlapped with the target, and the other two are
aligned symmetrically about the target. For this spe-
cial setting, it is easy to see that the rotation function∑
j∈Ni

β(xi, xj , xo)Rxij/‖xij‖ in (2) is invalid to break
the singleton formation. Nevertheless, this stalemate can
be easily broken when the positions of the three vehicles
are slightly perturbed.

3 Simulation

The simulation is conducted for five vehicles equipped
with the controller ui = uoi defined in (2) for

α(s) =

{
(s− d)−1 − (µ− d)−1, s ∈ (d, µ)

0, s ∈ [µ,∞)
,

µ = 3, d = 1, ε = 0.05, δ = 10◦, and k = 1. The first re-
sult, plotted in the top graph of Fig. 1, shows the target-
fencing trajectories with the initial positions of the five
vehicles arbitrarily selected. In particular, the target at
xo = [3, 10]T is asymptotically fenced by the convex hull
of the five vehicles, as expected by the property (P1).
During the evaluation, collision avoidance formulated in
the property (P2) is demonstrated in Fig 2 with the curve
representing the minimal distance among two adjacent
vehicles, i.e., mini6=j∈N ‖xi(t) − xj(t)‖, lower bounded
by d. To verify the functionality of the rotation compo-
nent, the initial vehicle distribution is deliberately set as
a singleton formation in the other two graphs of Fig. 1.
A proper target-fencing behavior is still achieved in the
middle graph, which is consistent with the property (P3)
that the singleton formation is not an invariant set. The
profile under the controller with ε = 0 is shown in the
bottom graph where the vehicle trajectories reduce to
be within the trivial set of singleton formation.

Theorem 2.1 holds for N > 3. The special case with
N = 3 is discussed in Remark 2.5. For example, the
rotation force is invalid for the special initial distribu-
tion [7, 10, 3, 10,−1, 10]T, as shown in the top graph of
Fig. 3. A slight modification of the initial positions to
[6.5, 10, 3, 10,−1, 10]T makes a proper target-fencing be-
havior again, as shown in the bottom graph of Fig. 3.
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Fig. 1. Target-fencing trajectories of five vehicles moving in
a two-dimensional plane (∗: target position, �: initial vehicle
position, ◦: final vehicle position at the 5th second.)
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Fig. 2. Minimal distance among two adjacent vehicles.
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Fig. 3. Target-fencing trajectories of three vehicles moving
in a two-dimensional plane.

4 Conclusion

The target-fencing problem has been solved in this paper
by a novel autonomous controller equipped with three
fundamental functionalities: attraction, repulsion, and
rotation. The result holds subject to exponentially van-
ishing disturbance. The disturbance may also represent
the error from an inner velocity regulation controller
when vehicle dynamics are considered. It requires fur-
ther investigation in the future research.
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